Capture and Phase Rotation for the Muon Collider

Harold G. Kirk Brookhaven National Laboratory

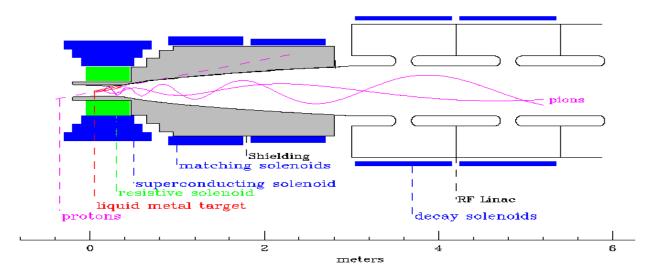
> MUTAC Meeting FNAL July 21, 1999

Outline

- 1. The Baseline
- 2. The Capture System
- 3. Phase Rotation
- 4. Polarization

 μ 's/bunch:

Power on the Target:


15 Hz Operation: 400 kW

Per Pulse: 28 kW

The current Scenario (100 GeV Higgs Factory)

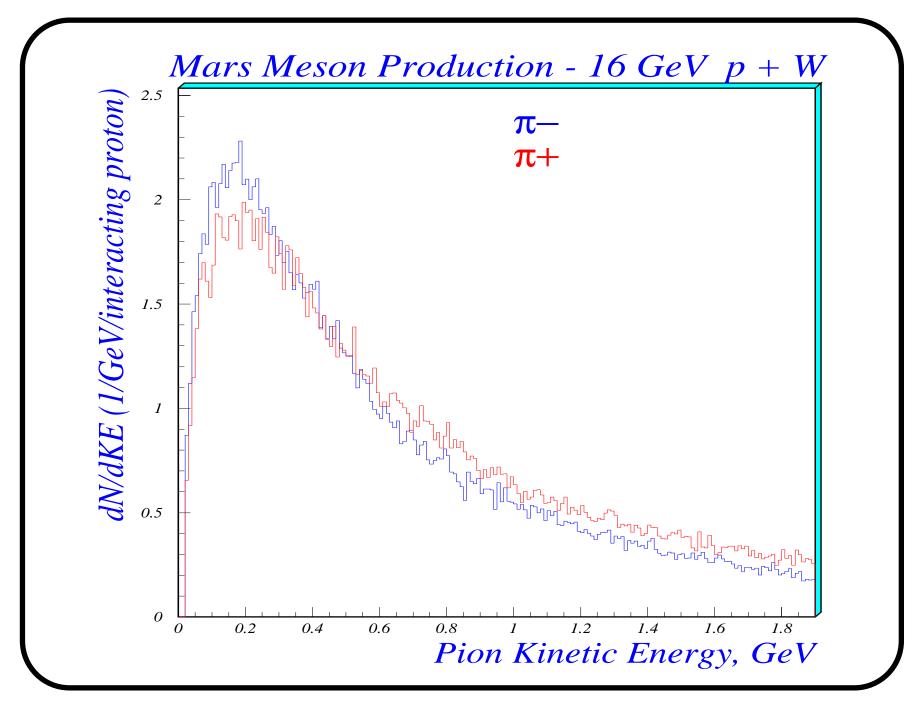
```
In the Collider: 4 \times 10^{12} Losses in Acceleration (1/2): 8 \times 10^{12} Losses in Cooling (1/2): 16 \times 10^{12} Capture efficiency (1/2): 32 \times 10^{12} Proton beam: Pions/Protons (0.6): 5.4 \times 10^{13} \Rightarrow 140 kJ (16 GeV/c protons and 0.05 < p_{\pi} < 0.80 GeV/c) Bunches/Pulse (2): 280 kJ 15 Hz Operation: 4 MW
```

TARGET, CAPTURE & DECAY

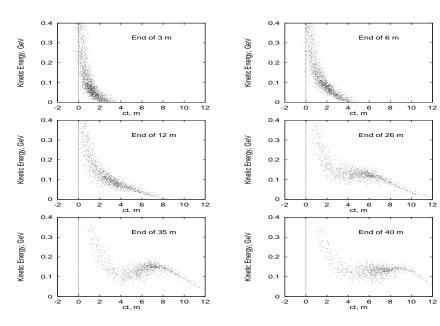
- TARGET:Liquid Metal Jet
- CAPTURE:20 T Solenoid
- BEAM DUMP
- MATCHING
- DECAY & PHASE ROT:1.25 T

The Hybrid 20 T Solenoid

Strategy


20 T + r=7.5cm \Longrightarrow P_t \le 225 MeV/c

Solenoid Attributes


- Shielding
 - 15 cm ID 24 cm OD
- Inner Coil
 - Resistive coil
 - 4 MW
 - **-** 6 T
 - 24 cm ID 60 cm OD
- Outer Coils
 - Superconducting
 - **-** 14 T
 - 60 cm ID

Matching section

20 T \rightarrow 1.25 T — warm bore 7.5cm \rightarrow 30cm

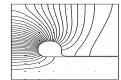
Phase Rotation Channel

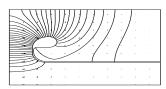
Phase Rotation Linac

RF frequency [MHz]	90	50	30
Cavity Length [cm]	120	120	120
Full Gap length [cm]	36	36	36
Cavity Radius [cm]	90	206	126
Beam Pipe Aperture [cm]	30	30	30
Q/1000 (from SFISH)	53.4	71.1	16.8
Ave Gradient [MV/m]	4.2	4.0	2.1
RF Peak Power [MW]	1.8	1.2	4.8
Ave Power (15Hz) [KW]	2.4	7.8	12.6
Stored Energy [J]	166	260	418
Linac Segment [m]	6	18	18
Total Power (15Hz) [KW]	12	118	190

Low Frequency RF Cavities For Muon Phase Rotation Channel

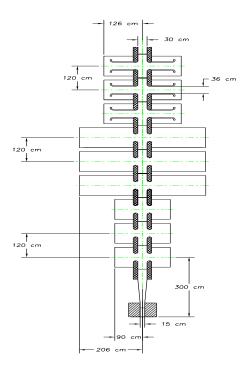
 $110~\mathrm{MHZ}$


70 MHZ


30 MHZ

90 MHZ

 $50 \mathrm{\ MHZ}$

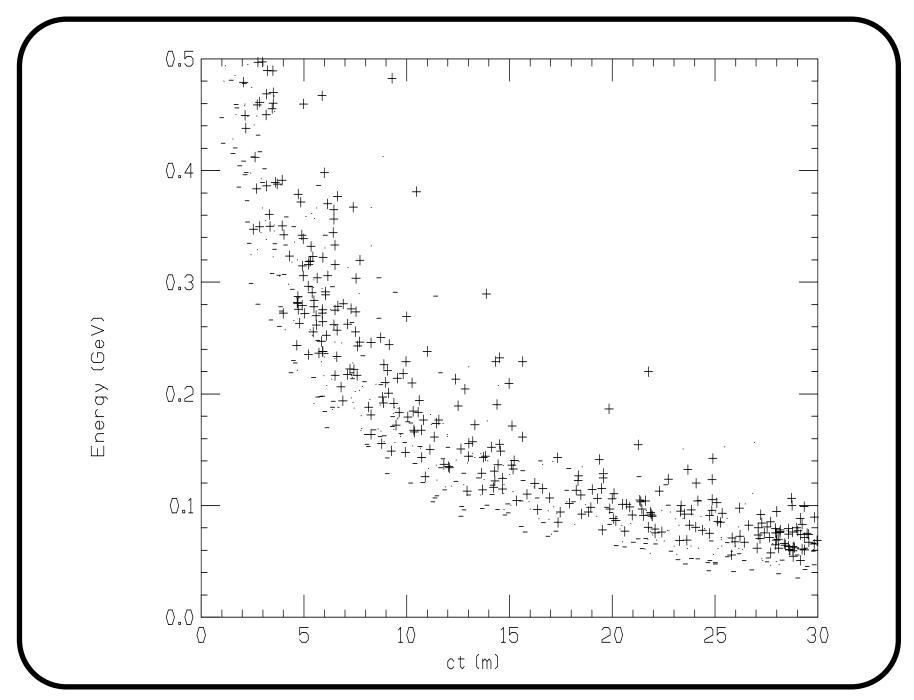


 $30~\mathrm{MHZ}$

Summary of Low Frequency Cavities Gradients used in various models

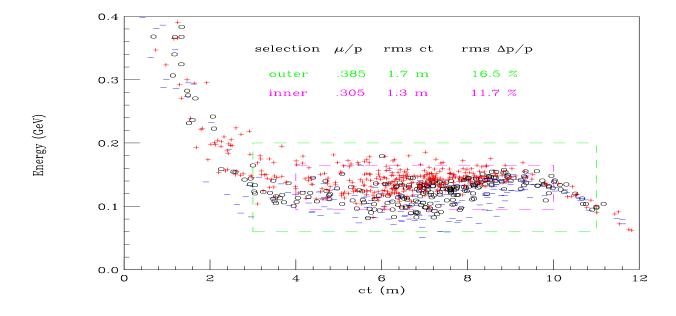
	Parmela Kirk	MCMuon Palmer	ICOOL Fukui	MCMuon Palmer		
Freq						
MHz	MV/m					
100	4.5					
90	4.2		4			
60	3.6	5		8		
50	3.3		5			
45	3.3			7		
30	2.1	4	4	5		

Solenoids Inserts

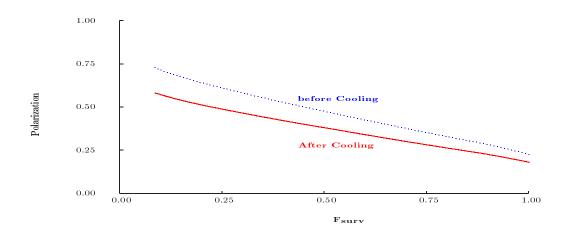

The Solenoid Channel

Solenoid outside of rf cavities

- Large Warm Bore 200 cm ID
- Restricted rf cavity radius 100 cm
- Modest B_z 1.25 T
- Large Beam Aperture 60 cm
- Uniform B_z


Solenoids inserted into rf cavities

- Reduced Warm Bore 30 cm ID
- High B_z 5 T
- Reduced Beam Aperture 30 cm
- Unrestricted rf cavity radius
- ullet Non-uniform B_z (Stop bands)



R. Palmer Muons at End of Phase Rotation

+ muons with P > $\frac{1}{3}$ - muons with P < $-\frac{1}{3}$

Polarization/Luminosity Trade off

Capture Issues

- Yield and spectra of low-energy pions
- Operation of a 20 T SC solenoid surrounding a \approx 4 MW target
- Operation of rf cavity in high radiation environment
- High-gradient pulsed operation of low-frequency rf cavities